MyNixOS website logo
Description

Time Series Prediction Integrated Tuning.

Prediction is one of the most important activities while working with time series. There are many alternative ways to model the time series. Finding the right one is challenging to model them. Most data-driven models (either statistical or machine learning) demand tuning. Setting them right is mandatory for good predictions. It is even more complex since time series prediction also demands choosing a data pre-processing that complies with the chosen model. Many time series frameworks have features to build and tune models. The package differs as it provides a framework that seamlessly integrates tuning data pre-processing activities with the building of models. The package provides functions for defining and conducting time series prediction, including data pre(post)processing, decomposition, tuning, modeling, prediction, and accuracy assessment. More information is available at Izau et al. <doi:10.5753/sbbd.2022.224330>.

TSPredIT

GitHub Repostars GitHub Repo stars

The Time Series Prediction with Integrated Tuning (TSPredIT) is based on DAL Toolbox with integrated hyperparameter optimization combining machine learning and data preprocessing. It also contains time series outliers removal, data augmentation, ensemble models, and a more flexible workflow design for Data Analytics tasks.

Installation

The latest version of TSPredIT at CRAN is available at: https://CRAN.R-project.org/package=tspredit

You can install the stable version of TSPredIT from CRAN with:

install.packages("tspredit")

You can install the development version of TSPredIT from GitHub https://github.com/cefet-rj-dal/tspredit with:

library(devtools)
devtools::install_github("cefet-rj-dal/tspredit", force=TRUE, upgrade="never")

Examples

The TSPredIT examples are made available at: https://nbviewer.org/github/cefet-rj-dal/tspredit/tree/main/examples

The TSPredIT is built on top of DAL Toolbox. Documentation of DAL Toolbox is made available at: https://cefet-rj-dal.github.io/daltoolbox/

library(tspredit)
#> Registered S3 method overwritten by 'quantmod':
#>   method            from
#>   as.zoo.data.frame zoo

Bugs and new features request

https://github.com/cefet-rj-dal/tspredit/issues.

Metadata

Version

1.0.777

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows