MyNixOS website logo
Description

Time Series Prediction with Integrated Tuning.

Time series prediction is a critical task in data analysis, requiring not only the selection of appropriate models, but also suitable data preprocessing and tuning strategies. TSPredIT (Time Series Prediction with Integrated Tuning) is a framework that provides a seamless integration of data preprocessing, decomposition, model training, hyperparameter optimization, and evaluation. Unlike other frameworks, TSPredIT emphasizes the co-optimization of both preprocessing and modeling steps, improving predictive performance. It supports a variety of statistical and machine learning models, filtering techniques, outlier detection, data augmentation, and ensemble strategies. More information is available in Salles et al. <doi:10.1007/978-3-662-68014-8_2>.

Logo do pacote TSPredIT TSPredIT

GitHubStars CRAN Downloads

TSPredIT (Time Series Prediction with Integrated Tuning) is a framework for time series prediction with automatic preprocessing and hyperparameter optimization. It is built on top of the DAL Toolbox and enhances its capabilities by integrating several advanced functionalities:

  • Automatic hyperparameter tuning for models and preprocessing
  • Outlier detection and removal
  • Time series data augmentation
  • Filtering techniques for noise reduction
  • Ensemble learning support
  • Modular and extensible workflow for predictive modeling

TSPredIT is designed to provide a more flexible and customizable pipeline for building predictive models on time series data, making it easier to compare alternatives and automate repetitive tasks.


Examples

Examples of TSPredIT usage are available in the official GitHub repository:

Additional documentation and tutorials for the underlying DAL Toolbox can be found at:


Installation

The latest version of TSPredIT is available on CRAN:

install.packages("tspredit")

You can install the development version from GitHub:

library(devtools)
devtools::install_github("cefet-rj-dal/tspredit", force = TRUE, upgrade = "never")

Bug reports and feature requests

To report issues or suggest improvements, please open a ticket here:

https://github.com/cefet-rj-dal/tspredit/issues.

Metadata

Version

1.2.747

License

Unknown

Platforms (76)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-linux
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows