Urban Centrality Index.
uci: Urban Centrality Index
uci is an R
package to calculate the Urban Centrality Index (UCI) originally proposed by Pereira et al., (2013). The UCI measures the extent to which the spatial organization of a city or region varies from extreme polycentric to extreme monocentric in a continuous scale from 0 to 1. Values close to 0 indicate more polycentric patterns and values close to 1 indicate a more monocentric urban form. More info on this vignette.
Installation
# from CRAN
install.packages('uci')
# or use the development version with latest features
utils::remove.packages('uci')
devtools::install_github("ipeaGIT/uci")
Basic Usage
library(uci)
# load data
data_dir <- system.file("extdata", package = "uci")
grid <- readRDS(file.path(data_dir, "grid_bho.rds"))
head(grid)
#> Simple feature collection with 6 features and 4 fields
#> Geometry type: POLYGON
#> Dimension: XY
#> Bounding box: xmin: -43.96438 ymin: -19.97414 xmax: -43.93284 ymax: -19.96717
#> Geodetic CRS: WGS 84
#> id population jobs schools geometry
#> 1 89a881a5a2bffff 439 180 0 POLYGON ((-43.9431 -19.9741...
#> 2 89a881a5a2fffff 266 134 0 POLYGON ((-43.94612 -19.972...
#> 3 89a881a5a67ffff 1069 143 0 POLYGON ((-43.94001 -19.972...
#> 4 89a881a5a6bffff 245 61 0 POLYGON ((-43.9339 -19.9728...
#> 5 89a881a5a6fffff 298 11 0 POLYGON ((-43.93691 -19.971...
#> 6 89a881a5b03ffff 555 1071 0 POLYGON ((-43.96136 -19.970...
# calculate UCI
df <- uci(
sf_object = grid,
var_name = 'jobs',
bootstrap_border = FALSE,
showProgress = TRUE
)
head(df)
#> UCI location_coef spatial_separation spatial_separation_max
#> 1 0.2538635 0.5278007 3880.114 7475.899
Citation
The R package uci is developed by a team at the Institute for Applied Economic Research (Ipea), Brazil. If you use this package in research publications, please cite it as:
- Pereira, R. H. M., Nadalin, V., Monasterio, L., & Albuquerque, P. H. (2013). Urban centrality: a simple index. Geographical analysis, 45(1), 77-89. https://www.doi.org/10.1111/gean.12002
BibTeX:
@article{pereira2013urbancentrality,
title = {Urban {{Centrality}}: {{A Simple Index}}},
author = {Pereira, Rafael H. M. and Nadalin, Vanessa and Monasterio, Leonardo and Albuquerque, Pedro H. M.},
year = {2013},
journal = {Geographical Analysis},
volume = {45},
number = {1},
pages = {77--89},
issn = {1538-4632},
doi = {10.1111/gean.12002}
}
Acknowledgement
The Hex image above illustrates Christaller’s Central Place Theory. It was adapted from an image originally created by Christaller and adapted by Becerra, 2015.