Description
Making Choropleth Map.
Description
You can easily visualize your 'sf' polygons or data.frame with h3 address. While 'leaflet' package is too raw for data analysis, this package can save data analysts' efforts & time with pre-set visualize options.
README.md
valuemap
The goal of valuemap is to save data analysts’ efforts & time with pre-set sf polygon visualization.
You can also visualize with plain data.frame based on H3 addresses
Installation
To install the stable version from CRAN, simply run the following from an R console:
install.packages('valuemap')
To install the latest development builds directly from GitHub, run this instead:
if (!require('remotes')) install.packages('remotes')
remotes::install_github('Curycu/valuemap')
How to Use?
Your data must have two columns named as name
& value
name
column is used for mouse over popup informationvalue
column is used for mouse over popup information & color polygons & display center number of polygons
library(valuemap)
data('seoul')
seoul
#> Simple feature collection with 25 features and 2 fields
#> Geometry type: POLYGON
#> Dimension: XY
#> Bounding box: xmin: 126.7643 ymin: 37.42901 xmax: 127.1836 ymax: 37.70108
#> Geodetic CRS: WGS 84
#> # A tibble: 25 x 3
#> name value geometry
#> <chr> <int> <POLYGON [arc_degree]>
#> 1 1111 17 ((126.969 37.56819, 126.968 37.56718, 126.9679 37.5671, 126.9673~
#> 2 1114 15 ((127.0163 37.55301, 127.0132 37.54994, 127.0117 37.54851, 127.0~
#> 3 1117 16 ((126.9825 37.51351, 126.9801 37.51212, 126.9756 37.5123, 126.96~
#> 4 1120 17 ((127.0628 37.54019, 127.0566 37.5291, 127.0491 37.53255, 127.04~
#> 5 1121 15 ((127.0923 37.52679, 127.0904 37.526, 127.0885 37.52549, 127.087~
#> 6 1123 14 ((127.0786 37.57186, 127.0782 37.57094, 127.0778 37.57008, 127.0~
#> 7 1126 16 ((127.0958 37.5711, 127.0957 37.5711, 127.0955 37.57105, 127.095~
#> 8 1129 20 ((127.0245 37.5792, 127.0232 37.57804, 127.0225 37.5781, 127.018~
#> 9 1130 13 ((127.022 37.61229, 127.0207 37.6125, 127.0206 37.61252, 127.020~
#> 10 1132 14 ((127.0464 37.63916, 127.0455 37.63783, 127.0453 37.63749, 127.0~
#> # ... with 15 more rows
Example 1
Quick & easy visualization of sf polygons with value
valuemap(seoul)
Example 2
Emphasize greater or equal to 20 polygons (>= 20, < 20 : two level only)
valuemap(seoul, legend.cut=c(20))
Example 3
Visualize without center number on polygons
valuemap(seoul, legend.cut=c(15,17,20), show.text=FALSE)
Example 4
Change color palette & center number on polygons text color, format & change background map
valuemap(
seoul, map=leaflet::providers$Stamen.Toner, palette='YlOrRd',
text.color='blue', text.format=function(x) paste(x,'EA')
)
Example 5
You can visualize based on plain data.frame with h3 address
data('seoul_h3')
seoul_h3
#> # A tibble: 1,329 x 2
#> name value
#> <chr> <dbl>
#> 1 8830e03449fffff 4
#> 2 8830e03453fffff 3
#> 3 8830e0345bfffff 3
#> 4 8830e034c9fffff 3
#> 5 8830e03601fffff 4
#> 6 8830e03603fffff 4
#> 7 8830e03605fffff 4
#> 8 8830e03607fffff 4
#> 9 8830e03609fffff 3
#> 10 8830e0360bfffff 4
#> # ... with 1,319 more rows
valuemap_h3(seoul_h3, legend.cut=1:6, show.text=FALSE)