MyNixOS website logo
Description

Biomarker Data Set by Vermeulen et al. (2009).

The biomarker data set by Vermeulen et al. (2009) <doi:10.1016/S1470-2045(09)70154-8> is provided. The data source, however, is by Ruijter et al. (2013) <doi:10.1016/j.ymeth.2012.08.011>. The original data set may be downloaded from <https://medischebiologie.nl/wp-content/uploads/2019/02/qpcrdatamethods.zip>. This data set is for a real-time quantitative polymerase chain reaction (PCR) experiment that comprises the raw fluorescence data of 24,576 amplification curves. This data set comprises 59 genes of interest and 5 reference genes. Each gene was assessed on 366 neuroblastoma complementary DNA (cDNA) samples and on 18 standard dilution series samples (10-fold 5-point dilution series x 3 replicates + no template controls (NTC) x 3 replicates).

vermeulen

CRANstatus R-CMD-check

{vermeulen} provides the Biomarker data set by Vermeulen et al. (2009) in tidy format.

This data set is for a real-time quantitative PCR experiment that comprises:

  • The raw fluorescence data of 24,576 amplification curves.
  • 64 targets: 59 genes of interest and 5 reference genes.
  • 366 neuroblastoma cDNA samples and 18 dilution series samples.

Installation

Install {vermeulen} from CRAN:

# Install from CRAN
install.packages("vermeulen")

You can instead install the development version of {vermeulen} from GitHub:

# install.packages("remotes")
remotes::install_github("ramiromagno/vermeulen")

Usage

Because of CRAN size limits the data is not provided at installation time. The data can be retrieved from this GitHub repository after installation with the function get_biomarker_dataset().

library(vermeulen)
library(tibble)
library(dplyr)

# Takes a few seconds (downloading from GitHub...)
biomarker <- as_tibble(get_biomarker_dataset())
biomarker
#> # A tibble: 1,226,880 × 11
#>    plate well  dye   target target_type sample sample_type copies dilution cycle
#>    <fct> <fct> <fct> <fct>  <fct>       <chr>  <fct>        <int>    <dbl> <int>
#>  1 AHCY  A1    SYBR  AHCY   toi         1495   unk             NA       NA     1
#>  2 AHCY  A1    SYBR  AHCY   toi         1495   unk             NA       NA     2
#>  3 AHCY  A1    SYBR  AHCY   toi         1495   unk             NA       NA     3
#>  4 AHCY  A1    SYBR  AHCY   toi         1495   unk             NA       NA     4
#>  5 AHCY  A1    SYBR  AHCY   toi         1495   unk             NA       NA     5
#>  6 AHCY  A1    SYBR  AHCY   toi         1495   unk             NA       NA     6
#>  7 AHCY  A1    SYBR  AHCY   toi         1495   unk             NA       NA     7
#>  8 AHCY  A1    SYBR  AHCY   toi         1495   unk             NA       NA     8
#>  9 AHCY  A1    SYBR  AHCY   toi         1495   unk             NA       NA     9
#> 10 AHCY  A1    SYBR  AHCY   toi         1495   unk             NA       NA    10
#> # ℹ 1,226,870 more rows
#> # ℹ 1 more variable: fluor <dbl>

Types of samples:

count(
  distinct(biomarker, plate, well, sample_type, copies, dilution),
  sample_type,
  copies,
  dilution
)
#> # A tibble: 7 × 4
#>   sample_type copies dilution     n
#>   <fct>        <int>    <dbl> <int>
#> 1 ntc              0      Inf   192
#> 2 std             15    10000   192
#> 3 std            150     1000   192
#> 4 std           1500      100   192
#> 5 std          15000       10   192
#> 6 std         150000        1   192
#> 7 unk             NA       NA 23424

Code of Conduct

Please note that the {vermeulen} project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.

References

  1. Vermeulen et al.. Predicting outcomes for children with neuroblastoma using a multigene-expression signature: a retrospective SIOPEN/COG/GPOH study. The Lancet Oncology 10, 663–671 (2009). doi: 10.1016/S1470-2045(09)70154-8.

  2. Ruijter et al.. Evaluation of qPCR curve analysis methods for reliable biomarker discovery: Bias, resolution, precision, and implications. Methods 59 32–46 (2013). doi: 10.1016/j.ymeth.2012.08.011.

Metadata

Version

0.1.2

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows