MyNixOS website logo
Description

Create and Manipulate Vocalisation Diagrams.

Create adjacency matrices of vocalisation graphs from dataframes containing sequences of speech and silence intervals, transforming these matrices into Markov diagrams, and generating datasets for classification of these diagrams by 'flattening' them and adding global properties (functionals) etc. Vocalisation diagrams date back to early work in psychiatry (Jaffe and Feldstein, 1970) and social psychology (Dabbs and Ruback, 1987) but have only recently been employed as a data representation method for machine learning tasks including meeting segmentation (Luz, 2012) <doi:10.1145/2328967.2328970> and classification (Luz, 2013) <doi:10.1145/2522848.2533788>.

vocaldia

This package contains functions that create and manipulate vocalisation diagrams. Vocalisation diagrams date back to early work in psychiatry (Jaffe and Feldstein, 1970) and social psychology (Dabbs and Ruback, 1987) but have only recently been employed as a data representation method for machine learning (Luz, 2013; Luz and Kane, 2009).

This provides a number of functions for generating vocalisation diagrams (vocaldias) from data frames containing, minimally, a column for start time of a vocalisation event (speech, silence, group-talk etc), a column for end time, and a column for the event identifier. It also contains some basic functions for reading and processing files from DementiaBank (.cha transcripts and audio files).

Functions getSampledVocalMatrix and getTurnTakingProbMatrix generate alternative versions of adjacency matrices for vocaldias. staticMatrix generates steady state diagrams from a vocaldia. printARFFfile generates a 'flat' representation of vocaldias for classifier training and evaluation.

Installation

You can install the released version of vocaldia from CRAN with:

install.packages("vocaldia")

Example

The following examples illustrate the use of vocaldia to create and visualise vocalisation graphs and their properties.

library(vocaldia)
## load some data
data(vocdia)

## select a dialogue
x <- subset(atddia, id=='Abbott_Maddock_01')

## show a probability matrix 
getTurnTakingProbMatrix(x)

## if you have igraph installed, visualise a vocal matrix
require('igraph')
subset(atddia, id=='Abbott_Maddock_01') %>% 
    getSampledVocalMatrix(individual=TRUE, nodecolumn='speaker') 
    %>% igraph.vocaldia %>% plot

## plot steady state of the Markov diagram
plot(staticMatrix(vocmatrix$ttarray, digits=4, history=TRUE))

See the following publication for further examples of use of this package:

Luz S, De La Fuente Garcia S, Albert P. A Method for Analysis of Patient Speech in Dialogue for Dementia Detection. In Resources and ProcessIng of linguistic, para-linguistic and extra-linguistic Data from people with various forms of cognitive impairment. Paris, France: ELRA. 2018. p. 35-42 (https://arxiv.org/abs/1811.09919)

Metadata

Version

0.8.4

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows