MyNixOS website logo
Description

Tools for the Analysis of Weak ARMA Models.

Numerous time series admit autoregressive moving average (ARMA) representations, in which the errors are uncorrelated but not necessarily independent. These models are called weak ARMA by opposition to the standard ARMA models, also called strong ARMA models, in which the error terms are supposed to be independent and identically distributed (iid). This package allows the study of nonlinear time series models through weak ARMA representations. It determines identification, estimation and validation for ARMA models and for AR and MA models in particular. Functions can also be used in the strong case. This package also works on white noises by omitting arguments 'p', 'q', 'ar' and 'ma'. See Francq, C. and Zakoïan, J. (1998) <doi:10.1016/S0378-3758(97)00139-0> and Boubacar Maïnassara, Y. and Saussereau, B. (2018) <doi:10.1080/01621459.2017.1380030> for more details.

weakARMA

The goal of weakARMA is to allows the study of nonlinear time series models through weak ARMA representations.

Installation (Gitlab)

Current released

You can install the released version of weakARMA from PLMlab with:

install.packages("remotes")
remotes::install_gitlab("jrolland/weakARMA", host="https://plmlab.math.cnrs.fr")

Development version

You can install the currently developed version of weakARMA from PLMlab with:

install.packages("remotes")
remotes::install_git("https://plmlab.math.cnrs.fr/jrolland/weakARMA.git", ref="develop")

Installation (CRAN)

CRAN package is available. You can install the released version of weakARMA from CRAN with:

install.packages("weakARMA")

Example

This is a basic example which shows you how to solve a common problem:

library(weakARMA)
## basic example code
Metadata

Version

1.0.3

License

Unknown

Platforms (77)

    Darwin
    FreeBSD
    Genode
    GHCJS
    Linux
    MMIXware
    NetBSD
    none
    OpenBSD
    Redox
    Solaris
    WASI
    Windows
Show all
  • aarch64-darwin
  • aarch64-freebsd
  • aarch64-genode
  • aarch64-linux
  • aarch64-netbsd
  • aarch64-none
  • aarch64-windows
  • aarch64_be-none
  • arm-none
  • armv5tel-linux
  • armv6l-linux
  • armv6l-netbsd
  • armv6l-none
  • armv7a-darwin
  • armv7a-linux
  • armv7a-netbsd
  • armv7l-linux
  • armv7l-netbsd
  • avr-none
  • i686-cygwin
  • i686-darwin
  • i686-freebsd
  • i686-genode
  • i686-linux
  • i686-netbsd
  • i686-none
  • i686-openbsd
  • i686-windows
  • javascript-ghcjs
  • loongarch64-linux
  • m68k-linux
  • m68k-netbsd
  • m68k-none
  • microblaze-linux
  • microblaze-none
  • microblazeel-linux
  • microblazeel-none
  • mips-linux
  • mips-none
  • mips64-linux
  • mips64-none
  • mips64el-linux
  • mipsel-linux
  • mipsel-netbsd
  • mmix-mmixware
  • msp430-none
  • or1k-none
  • powerpc-netbsd
  • powerpc-none
  • powerpc64-linux
  • powerpc64le-linux
  • powerpcle-none
  • riscv32-linux
  • riscv32-netbsd
  • riscv32-none
  • riscv64-linux
  • riscv64-netbsd
  • riscv64-none
  • rx-none
  • s390-linux
  • s390-none
  • s390x-linux
  • s390x-none
  • vc4-none
  • wasm32-wasi
  • wasm64-wasi
  • x86_64-cygwin
  • x86_64-darwin
  • x86_64-freebsd
  • x86_64-genode
  • x86_64-linux
  • x86_64-netbsd
  • x86_64-none
  • x86_64-openbsd
  • x86_64-redox
  • x86_64-solaris
  • x86_64-windows